History of Anatomy

To begin with the History of Anatomy we have to do two things. We have to first define the term Anatomy and discuss in brief its close relationship with Physiology. Certainly, the history of anatomy has been characterized, over a long period of time, by an ongoing, developing understanding of the functions of organs and structures in the human body. Methods have advanced dramatically, from the simple examination by dissection of animals and cadavers (corpses), to the development and use of the microscope, to the far more technological advances of the electron microscope and other complex techniques developed since the beginning of the 20th century. During the 19th and early 20th centuries it was the most prominent biological field of scientific study

The birth of biology: 5th – 4th century BC

The Greek philosophers, voracious in their curiosity, look with interest at the range of living creatures, from the humblest plant to man himself. A Greek name is coined by a German naturalist in the early 19th century for this study of all physical aspects of natural life – biology, from bios (life) and logos (word or discourse). It is a subject with clear subdivisions, such as botany, zoology or anatomy. But all are concerned with living organisms.

The first man to make a significant contribution in biology is Alcmaeon, living in Crotona in the 5th century. Crotona is famous at the time for its Pythagorean scholars, but Alcmaeon seems not to have been of their school.
 
Alcmaeon is the first scientist known to have practised dissection in his researches. His aim is not anatomical, for his interest lies in trying to find the whereabouts of human intelligence. But in the course of his researches he makes the first scientific discoveries in the field of anatomy.

The subsequent Greek theory, subscribed to even by Aristotle, is that the heart is the seat of intelligence. Alcmaeon reasons that since a blow to the head can affect the mind, in concussion, this must be where reason lies. In dissecting corpses to pursue this idea, he observes passages linking the brain with the eyes (the optic nerves) and the back of the mouth with the ears (Eustachian tubes).

Human vivisection: c.300 BC

Early in the 3rd century BC two surgeons in Alexandria, Herophilus and Erasistratus, make the first scientific studies designed to discover the workings of human anatomy.
The cost of their contribution to science would be considered too high in modern times (they acquire much of their information from Human vivisection, the patients being convicted criminals). But Celsus, a Roman writer on medical history, energetically justifies the suffering of the criminals as providing ‘remedies for innocent people of all future ages’.

The influential errors of Galen: 2nd century AD

The newly appointed chief physician to the gladiators in Pergamum, in AD 158, is a native of the city. He is a Greek doctor by the name of Galen. The appointment gives him the opportunity to study wounds of all kinds. His knowledge of muscles enables him to warn his patients of the likely outcome of certain operations – a wise precaution recommended in Galen’s Advice to doctors.

But it is Galen’s dissection of apes and pigs which give him the detailed information for his medical tracts on the organs of the body. Nearly 100 of these tracts survive. They become the basis of Galen’s great reputation in medieval medicine, unchallenged until the anatomical work of Vesalius.

Through his experiments Galen is able to overturn many long-held beliefs, such as the theory (first proposed by the Hippocratic school in about 400 BC, and maintained even by the physicians of Alexandria) that the arteries contain air – carrying it to all parts of the body from the heart and the lungs. This belief is based originally on the arteries of dead animals, which appear to be empty.

Galen is able to demonstrate that living arteries contain blood. His error, which will become the established medical orthodoxy for centuries, is to assume that the blood goes back and forth from the heart in an ebb-and-flow motion. This theory holds sway in medical circles until the time of Harvey.

Science’s siesta: 8th – 15th century
In the profoundly Christian centuries of the European Middle Ages the prevailing mood is not conducive to scientific enquiry. God knows best, and so He should – since He created everything. Where practical knowledge is required, there are ancient authorities whose conclusions are accepted without question – Ptolemy in the field of astronomy, Galen on matters anatomical.
A few untypical scholars show an interest in scientific research. The 13th-century Franciscan friar Roger Bacon is the most often quoted example, but his studies include alchemy and astrology as well as optics and astronomy. The practical scepticism required for science must await the Renaissance.

History of Anatomy

The history of anatomy has been characterized, over a long period of time, by an ongoing, developing understanding of the functions of organs and structures in the human body. Methods have advanced dramatically, from the simple examination by dissection of animals and cadavers (corpses), to the development and use of the microscope, to the far more technological advances of the electron microscope and other complex techniques developed since the beginning of the 20th century. During the 19th and early 20th centuries it was the most prominent biological field of scientific study.

History of physiology

Main article: History of physiology

The study of human physiology dates back to at least 420 B.C. and the time of Hippocrates, the father of western medicine.[16] The critical thinking of Aristotle and his emphasis on the relationship between structure and function marked the beginning of physiology in Ancient Greece, while Claudius Galenus (c. 126–199 A.D.), known as Galen, was the first to use experiments to probe the function of the body. Galen was the founder of experimental physiology.[17] The medical world moved on from Galenism only with the appearance of Andreas Vesalius and William Harvey.[18]

Following from the Middle Ages, the Renaissance brought an increase of physiological research in the Western world that triggered the modern study of anatomy and physiology. Andreas Vesalius was an author of one of the most influential books on human anatomy, De humani corporis fabrica.[19] Vesalius is often referred to as the founder of modern human anatomy.[20] Anatomist William Harvey described the circulatory system in the 17th century,[21] demonstrating the fruitful combination of close observations and careful experiments to learn about the functions of the body, which was fundamental to the development of experimental physiology. Herman Boerhaave is sometimes referred to as a father of physiology due to his exemplary teaching in Leiden and textbook Institutiones medicae (1708).[citation needed]

In the 18th century, important works in this field were done by Pierre Cabanis, a French doctor and physiologist.[citation needed]

In the 19th century, physiological knowledge began to accumulate at a rapid rate, in particular with the 1838 appearance of the Cell theory of Matthias Schleiden and Theodor Schwann. It radically stated that organisms are made up of units called cells. Claude Bernard’s (1813–1878) further discoveries ultimately led to his concept of milieu interieur (internal environment), which would later be taken up and championed as “homeostasis” by American physiologist Walter Cannon (1871–1945).[clarification needed]

In the 20th century, biologists also became interested in how organisms other than human beings function, eventually spawning the fields of comparative physiology and ecophysiology.[22] Major figures in these fields include Knut Schmidt-Nielsen and George Bartholomew. Most recently, evolutionary physiology has become a distinct subdiscipline.[23]

The biological basis of the study of physiology, integration refers to the overlap of many functions of the systems of the human body, as well as its accompanied form. It is achieved through communication that occurs in a variety of ways, both electrical and chemical.

In terms of the human body, the endocrine and nervous systems play major roles in the reception and transmission of signals that integrate function. Homeostasis is a major aspect with regard to the interactions in the body.

Physiology–A Shared Perspective

History of physiology

The study of human physiology dates back to at least 420 B.C. and the time of Hippocrates, the father of western medicine.[16] The critical thinking of Aristotle and his emphasis on the relationship between structure and function marked the beginning of physiology in Ancient Greece, while Claudius Galenus (c. 126–199 A.D.), known as Galen, was the first to use experiments to probe the function of the body. Galen was the founder of experimental physiology.[17] The medical world moved on from Galenism only with the appearance of Andreas Vesalius and William Harvey.[18]

Following from the Middle Ages, the Renaissance brought an increase of physiological research in the Western world that triggered the modern study of anatomy and physiology. Andreas Vesalius was an author of one of the most influential books on human anatomy, De humani corporis fabrica.[19] Vesalius is often referred to as the founder of modern human anatomy.[20] Anatomist William Harvey described the circulatory system in the 17th century,[21] demonstrating the fruitful combination of close observations and careful experiments to learn about the functions of the body, which was fundamental to the development of experimental physiology. Herman Boerhaave is sometimes referred to as a father of physiology due to his exemplary teaching in Leiden and textbook Institutiones medicae (1708).[citation needed]

In the 18th century, important works in this field were done by Pierre Cabanis, a French doctor and physiologist.[citation needed]

In the 19th century, physiological knowledge began to accumulate at a rapid rate, in particular with the 1838 appearance of the Cell theory of Matthias Schleiden and Theodor Schwann. It radically stated that organisms are made up of units called cells. Claude Bernard’s (1813–1878) further discoveries ultimately led to his concept of milieu interieur (internal environment), which would later be taken up and championed as “homeostasis” by American physiologist Walter Cannon (1871–1945).[clarification needed]

In the 20th century, biologists also became interested in how organisms other than human beings function, eventually spawning the fields of comparative physiology and ecophysiology.[22] Major figures in these fields include Knut Schmidt-Nielsen and George Bartholomew. Most recently, evolutionary physiology has become a distinct subdiscipline.[23]

The biological basis of the study of physiology, integration refers to the overlap of many functions of the systems of the human body, as well as its accompanied form. It is achieved through communication that occurs in a variety of ways, both electrical and chemical.

In terms of the human body, the endocrine and nervous systems play major roles in the reception and transmission of signals that integrate function. Homeostasis is a major aspect with regard to the interactions in the body.


Comments are Closed on this Post